Glaze Materials: Glaze is a layer of glass fused to a clay body, composed of a glass-former, fluxes, and viscosity agents.

GLASS-FORMERS (RO₂)
Silica (SiO₂) is the major glass-former. Refractory, but forms eutectics w/many fluxes. Low coefficient of expansion, used to adjust crazing. Makes glaze harder, more durable. **Sources:** FLINT (a.k.a. quartz) as a pure source, or silica combined w/other ingredients in FELDSPAR, FRIT, TALC, CLAY, NEPHELITE, CORNWALL STONE, PYROPHYLITE, AND WOLLASTONITE.

VISCOSITY AGENTS (R₂O₃)
Alumina (Al₂O₃) is the major viscosity agent. Refractory. Inhibits crystal growth and devitrification. **Sources:** ALUMINA HYDRATE as a pure source or alumina, or combined with other materials in FELDSPAR, CLAY, FRIT, NEPHELITE, CORNWALL STONE, PYROPHYLITE. **BORON** is both a flux and viscosity agent.

FLUXES (RO, R₂O)
Alkaline fluxes: SODIUM, POTASSIUM, LITHIUM
Alkaline earths: CALCIUM, BARIUM, STRONTIUM, MAGNESIUM
Metallic fluxes: LEAD, ZINC
+ Classified as a viscosity agent, also acts as a flux: BORON

<table>
<thead>
<tr>
<th>Flux</th>
<th>Active temp.</th>
<th>Characteristics</th>
<th>Sources (*soluble)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SODIUM Na₂O</td>
<td>low-high</td>
<td>• similar to potassium but a bit more active
• produces soft glaze surfaces that are easily abraded or attacked by acids
• high coefficient of expansion (crazes)
• brilliant color: Cu = turquoise, Mn = purple, Co = ultra-marine blue, Cr = yellow green, chartreuse w/ small amounts of Cr
• slightly more active than K or Li</td>
<td>SODA ASH *
POTASSIUM BICARBONATE *
FRIT (may be part soluble)
NEPHELITE SYENITE
CORNWALL STONE
CRYOLITE</td>
</tr>
<tr>
<td>POTASSIUM K₂O</td>
<td>low-high</td>
<td>• similar to sodium, generally, but a bit less active</td>
<td>PEARL ASH *
FRIT (may be part soluble)
NEPHELITE SYENITE
CORNWALL STONE</td>
</tr>
<tr>
<td>Flux</td>
<td>Active temp.</td>
<td>Characteristics</td>
<td>Sources (*soluble)</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td>--</td>
<td>---</td>
</tr>
</tbody>
</table>
| LITHIUM Li₂O alkaline flux | low-high | • similar to KNaO, but has a low coefficient of expansion (excess may cause shivering)
 • like KNaO, makes mechanically soft glazes
 • small amounts (1%) may help smooth glossy glazes, more creates devitrification and matte crystalline surfaces
 • increases glaze fluidity
 • begins fluxing at 1472 °F (800° C) and is useful at all temperatures. Expensive, so at high temps cheaper fluxes may be better choices
 • may halo at the edge of the glaze
 • gasses as it decomposes and may cause pinholing | LITHIUM CARBONATE (may deflocculate glazes)
 Li FELDSPARS (Spodumene, Lepidolite, Petalite, Amblygonite)
 FRIT (Fusion F79, F134, F493, F582 Pemco P-2P36, Ferro FB-276-P-2)
 MACALOID |
| LEAD PbO metallic flux | low-med | volatilizes @ cone 6
 • blisters in reduction
 • med. coeff. of expansion
 • soft glaze, may be leached w/ acids
 • poisonous raw, may be leach toxic amts. in the fired state
 • warm color response: + Fe = amber, warm brown. + Cd & Se = red. + Mn = plum. + Cr = orange. + Cu = grass green transp. | WHITE LEAD
 RED LEAD
 LITHARGE
 GALENA
 LEAD CHROMATE
 FRIT (eg. Ferro 3300 or O’Hommel Pb series) |
| ZINC ZnO metallic flux | med-high | • low coeff. of expansion (in small amts. decreases crazing)
 • high Zn opacifies and matts
 • excess may cause crawling
 • promotes crystals w/Ti & low Al
 • nice Co blues, muddy Fe browns, + Cr = brown. + Cu = bluish green
 • In cone 10 reduction, Zn is completely volatilized. | ZINC OXIDE
 CALCINED ZINC OXIDE
 FRIT |
| CALCIUM CaO alkaline earth flux | high | • produces hard glaze
 • helps thermal shock resistance
 • favors celadon greens in reduction
 • NOT good for Cu red
 • excess will matt or cloud
 • forms eutectics often in small amounts
 • Cu = toward green in low temp. oxidation. | WHITING
 DOLOMITE
 BONE ASH
 WOLLASTONITE
 FLUROSPAR
 FELDSPAR
 FRIT
 GERSTLEY BORATE
 CEMENT
 PLASTER |
<table>
<thead>
<tr>
<th>Flux</th>
<th>Active temp.</th>
<th>Characteristics</th>
<th>Sources (*soluble)</th>
</tr>
</thead>
</table>
| BARIUM | high | • not very active flux
• good matting agent
• Ba + B form eutectic & will not mat
• hardens glaze
• toxic raw, may leach in high Ba matt glazes. See article by Janet DeBoos in Janet DeBoos Ceramics Technical #3 (1997). Not recommended for food ware. Substitute .75 SrCO₃ instead.
• good for Cu reds in reduction
• Cu + high Ba = matt blue even in reduction. + Fe = blues in reduction. + Cr = warmer opaque green. + Co = purple-blue. | BARIUM CARBONATE
FRIT |
| MAGNESIUM| high | • not very active flux
• good for crystal glazes
• high Mg = buttery matt & opaque
• hardens glaze
• colors toward pastels
• Mg + Co = purple | MAGNESIUM CARBONATE
DOLOMITE
TALC
FRIT |
| STRONTIUM| high | • similar to Ca in glaze effect, but slightly more active while less fluid. • use .75 SrCO₃ to replace 1 BaO (test!) Slow to melt: soak. | STRONTIUM CARBONATE (slightly soluble) |
| BORON | low-high | • classified as a viscosity agent but also acts as a flux
• produces high gloss
• boils at high temps.
• wide firing range
• small amounts decrease crazing, large amounts may cause crazing
• inhibits crystal growth & devitrification
• thickens melted glaze, excess may cause crawling
• may have a solvent effect and leach slip color
• color may be opalescent, mottled w/ high B | BORAX *
BORIC ACID *
GERSTLEY BORATE
FRIT |

<table>
<thead>
<tr>
<th>FRIT</th>
<th>Substitutes</th>
<th>Melting °F</th>
<th>Comments * (coefficient of expansion x 10⁻⁶)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3110</td>
<td>P-IVo5 Pemco</td>
<td>1400</td>
<td>Highly alkaline. Somewhat soluble: not recommended as a body flux. As a main flux causes crazing. Coefficient of exp.10.1 *</td>
</tr>
<tr>
<td>Ferro</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3195</td>
<td>Ferro</td>
<td>1500</td>
<td>Alkaline-boron. Not as alkaline as 3110, w/more Ca, B, Al, but still tends toward alkaline color response. Coefficient of exp.6.5 *</td>
</tr>
<tr>
<td>3124</td>
<td>P-311 Pemco</td>
<td>1600</td>
<td>Borosilicate, high calcium, good for tableware. Coefficient of exp. 7.9*</td>
</tr>
<tr>
<td>Ferro</td>
<td>O Hommel 90</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fluxes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>3134</td>
<td>P-54 Pemco O Hommel 14</td>
<td>1450</td>
<td>High sodium, calcium, and boron. No alumina. Coefficient of exp. 9.6*</td>
</tr>
<tr>
<td>3289</td>
<td>Fusion Frit 65 GF129</td>
<td>1500</td>
<td>Barium-some sodium. Coefficient of exp. 8.2*</td>
</tr>
<tr>
<td>3819</td>
<td>P-25 Pemco O Hommel 259</td>
<td>1400</td>
<td>Alka-boron. Low Ca. Coefficient of exp. 10.3*</td>
</tr>
</tbody>
</table>